
 
 
 

Ph.D. QUALIFYING EXAMINATION – PART A 
 

Tuesday, January 9, 2018, 1:00 – 5:00 P.M. 
 
 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.  Some 
students find useful the Schaum’s outlines, ‘Mathematical  Handbook of Formulas and Tables’. 
 
 
A1. A block of mass M is rigidly attached to a 
uniform disk of radius R at a distance of R/2 from 
the fixed axis of the disk. The disk-block system is 
free to rotate about the fixed axis.  A bullet of mass 
m is fired with velocity v into the block and the 
bullet sticks in the block. The mass of the disk is 
MD. Find the amplitude of the oscillations of the 
disk-block system after the collision.  

 

 

 

A2.  A non-conducting sphere of radius a carries a volume charge 
density  2Ar  , where A  is a constant.  It is surrounded by a 
thick concentric metal spherical shell of inner radius b and outer 
radius c.  The thick conducting shell carries no net charge. 

a)  Use Gauss’s Law to determine the electric field as a function 
of   r, i.e., for ; ; ;r a a r b b r c r c       

b)  Find the surface charge density   at b and c. 

c)  Determine the electric potential as a function of r. 

d)  If the outer surface at r c is grounded, how do the results above change? 
 

 

 

 

 

a 

b 
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A3. A particle of mass ݉ is confined by an infinite potential to the one-dimensional region 
0 ൏ ݔ ൏ ݐ Initially, the particle is occupying the ground state of the potential. At .ܮ ൌ 0 the 
potential well doubles in size to cover the region 0 ൏ ݔ ൏   .ܮ2

a) Write the expression for the normalized wave function of the particle for ݐ ൏ 0. 

b) Calculate the probabilities that the particle transitions to (i) the ground, (ii) the first excited, 
and (iii) the second excited states of the expanded potential well after the change has taken place.   

 

 

A4. A particle of mass ݉ is in the ground state of a 1D square well potential confining it to the 
region ݔ ∈ ሾ0, ܽሿ.  A heavy particle, moving with velocity ݒ parallel to the ݔ-axis, passes through 
the region at high speed and interacts with the particle through a weak short-range interaction 
that can be approximated by the time-dependent delta function potential ܸሺݐሻ ൌ ݔሺߜߙ െ  ,ሻݐݒ
where ߙ ൏൏ ԰²/2݉ܽ is a small constant. 

 
  a)  Quite generally, starting with the time-dependent Schrödinger equation, show that the state 
of a quantum system at time ݐ, evolving under a Hamiltonian ܪሺݐሻ, can be expressed in terms of 
its state at an initial time ₀ݐ through the relation 

 

   |߰ሺݐሻ〉 ൌ |߰ሺ₀ݐሻ〉 െ ሺ݅/԰ሻ ׬ ′ݐ݀〈ᇱሻݐᇱሻ|߰ሺݐሺܪ
௧
௧₀ . 

 
  b)  Use this last result, with ₀ݐ ൌ െ and ݐ ൌ ൅  to find, correct to lowest non-vanishing 
order α, the total probability for the particle to make a transition to the first excited state of the 
system as a result of this collision. 

 
 
 
 
A5.  A large block of mass M  is at rest on a 
rough horizontal surface. The block contains a 
quarter-circle frictionless track of radius R as 
shown in the picture. A small mass m is 
released from rest at the top of the track. Find 
the minimum value of the static friction 
coefficient  between the large block and the 
horizontal surface such that the large block 
remains at rest while the small mass is sliding 
down. 
 
 
 
 
 



 
 
 
 
A6.  A capacitor, C, is connected to a resistor, R, and to a 
battery, V0, as  shown.  Start the time as 0t   when the 
switch is thrown.   
 
a)  After the switch is thrown, determine the charge and 
current in the circuit as a function of time. 
 
Assume the capacitor is a parallel plate capacitor 
constructed of circular plates of radius a and separated by 
a distance  ݓ ≪ ܽ .  The wires connect to the centers of the plates.   
 
b)  Find the electric and magnetic fields between the plates, as a function of  and t. 
 

c)  Use the Poynting vector to determine the electromagnetic power flowing into the capacitor. 

d)  Determine the total energy stored in the capacitor after a long time, i.e., let t  .  
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Ph.D. QUALIFYING EXAMINATION – PART B 
 

Wednesday, January 10, 2018, 1:00 – 5:00 p.m. 
 

 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.  Some 
students find useful the Schaum’s outlines’, ‘Mathematical Handbook of Formulas and Tables’. 
 
B1.  Flyball Governor: In the system shown in the Figure, there are 
hinges at all the corners of the rhombus, and the top corner is 

attached to the vertical axis. The particle 2m  moves without friction 

on the vertical axis and the whole system rotates about this vertical 
axis with a constant angular velocity Ω. Gravity pulls down on all 
masses. Derive the Lagrangian of the system, obtain the equations of 

motion, and find the equilibrium angle 0.  

 

 

 

 

 

B2. A steady current I flows down a long hollow 
cylindrical wire of inner radius a and outer radius b, 
where 2b a .  The current is uniformly distributed in 
the wire.  

a)  Use Ampere’s Law to determine the magnetic field 

B


 in all three regions: , ,a a b b      . 

b)  Determine the vector potential A


 in all three 
regions: , ,a a b b      . 

As you may know, in cylindrical coordinates  
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B3.  Recall the twin paradox experiment. Twins Mary and Frank undertake an experiment in 
which Mary decides to travel with speed ݒ to a star system (distance ܮ away) and back. When, 
according to Frank’s calculations, Mary is turning back home, Frank decides to rush to meet her 
on the way home. He computes his speed ݑ in such a way that both Frank and Mary will be 
exactly the same age at the time they meet each other.  

(a) Write an equation, which Frank used to compute the required speed ݑ from Mary’s speed ݒ. 

(b) Show that there is a maximum speed ݒ௠௔௫ when Frank still can accomplish his feat. Find the 
value of ݒ௠௔௫. 

Note: you can neglect the brief periods of acceleration/deceleration by both travelers during their 
journeys. 

 

 

B4 The Hamiltonian for a particular two-state system is given by 
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(a) Solve the problem exactly  0  to find the energy eigenkets ( 1  and  2 )  and the 

corresponding eigenvalues ( 1E  and 2E  ).    

 
(b)  Assume that 0 0

1 2A E E   and solve the same problem using time-independent 

perturbation theory up to first order in the energy eigenkets and up to second order in the energy 
eigenvalues.  Compare your results with those in part (a). 
 
(c)  Suppose the two unperturbed energies are almost degenerate, i.e., 0 0

1 2A E E  .   Show 

that the exact results obtained in part (a) closely resemble what you expect by applying 
degenerate perturbation theory to this problem with 0 0

1 2E E .   

  



B5.  A particle constrained to move in the ݕݔ-plane is subject to an isotropic linear restoring 
force directed towards the origin. The Hamiltonian is 
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where ݍఈ ൌ ሺ݉߱/԰ሻଵ/ଶ	ݔఈ  and  ݌ఈ ൌ ሺ݉԰߱ሻିଵ/ଶ	 ఈܲ .  [Recall that, for a 1D oscillator, the 

ground state energy eigenfunction can be written ₀ሺݍሻ ൌ 〈₀|ݍ〉 ൌ  [.ଵ/ସ݁ିሺଵ/ଶሻ௤²ିߨ
 

  a. Using, e.g., the raising operators ܽఈା ൌ 2ିଵ/ଶሺݍఈ െ ఈ݌݅ ሻ, construct a set of orthonormalized 

wave functions ߰ଵ,଴ and  ߰଴,ଵ for the two energy eigenstates with ݊ ൌ 	 ݊௫ ൅ ݊௬ ൌ 1. 

 
  b. Suppose this system is now subject to a weak, but strongly-localized perturbation 
 

ሺଵሻܪ ൌ ௫ݍ൫ߜ	԰߱ߣ െ ௬ݍ൫ߜ଴൯ݍ െ  .଴൯ݍ

 
where 1 ൐൐ ߣ ൐ 0. Find, to first order in ߣ, the new energy eigenvalues associated with the 
݊ ൌ 1 level for this system. 

 
 
 
B6.  N non-interacting spheroid-shaped magnetic nanoparticles are 
suspended in a liquid of volume V. Each nanoparticle has a permanent 

magnetic moment  pointing along the symmetry axis of the spheroid (see 
figure). The classical Hamiltonian describing the rotation of a single 
nanoparticle in a magnetic field B pointing in the z-direction is given by 

 Hrot = 1/(2I) ( p
2 + p

2/sin2 )   B cos . 

Here,  and  are the usual angles of a spherical coordinate system, p and p are the canonically 
conjugate momenta, and I is the moment of inertia of the nanoparticle (for axes perpendicular to 
its symmetry axis). 

(a) Calculate the rotational part Zrot of the canonical partition and find the average 
magnetization per volume V of the liquid, M = (N/V)  cos, as a function of field B and 
temperature T.  

[Hint: 

  dx exp[-x2/(2a2)] = (2a2)1/2.] 

 

(b) In the weak-field limit B << kBT, the magnetization behaves as M =  B where  is the 
magnetic susceptibility. Determine the magnetic susceptibility by expanding your result 
for M from part (a) in the limit B << kBT  to lowest non-trivial order.  
[Hint: coth x =1/x +x/3 + …] 

 
 


